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ABSTRACT

Dynamic equations which include the effects of

unsteady aerodynamic forces and a flexible body

structure have been developed for a free-flylng

high performance fighter aircraft. The linear and

angular deformations are assumed to be small in

the body reference frame, allowing the equations

to be linearized in the deformation variables,

Equations for total body dynamics and flexible

body dynamics are formulated using the hybrid

coordinate method and integrated in a state space

format. A detailed finite element model of a

generic high-performance fighter aircraft is used

to generate the mass and stiffness matrices.

Unsteady aerodynamics are represented by a

rational function approximation of the doublet

lattice matrices. The equations simplify for the

case of constant angular rate of the body

reference frame, allowing the effect of roll rate

to be studied by computing the eigenvalues of the

system. It is found that the rigid body modes of

the aircraft are greatly affected by introducing a

constant roll rate, while the effect on the

flexible modes is minimal for this configuration.

1. INTRODUCTION

Future fighter aircraft must be able to meet

stringent maneuverability and performance

requirements. This will result in aircraft

designs in which the interaction of flexibility,

aerodynamics, and overall body motion during a

maneuver are of prime importance. The need for

superagility and the use of advanced lightweight

materials will make it very important to consider
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flexibility effects in the analysis of the

aircraft undergoing maneuvers at high rates.

Flexible body dynamics have been investigated

in many other writings, including references [I] -

[4]. In this paper, dynamic equations will be

derived in a manner similar to that in reference

[5], which contains a more thorough development of

the equations. In addition, aerodynamic forces

will be explicitly included in the equations.

These equations will then be applied to a

realistic model of a modern fighter aircraft.

The aircraft is assumed to be a collection of

elastically interconnected, discrete rigid

subbodies which are subjected to external forces

and torques, including unsteady aerodynamic

forces. It is assumed that the deformations of

the subbodies with respect to the body reference

frame are small so that the high order terms in

the deformation variables and their rates can be

neglected. The rotational effects of motors,

fans, and turbines are not included in this

representation.
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Figure I. Reference Frames and a Subbody



Tablei. Vectorsand Dyads definitions

Vectors and Dyads Definition

(i} T

[b} T

(i]T= (_}T 0

_bs} T
d = {i] _ d

= {i}T V

_s = ci_T zs
c = {b}* c

_s " {b}T rs

_s = (b)T.us
_s " [bsl" "s

_s = {bs}T Is [bs}

basis matrix for inertial reference frame (IRF)

basis matrix for body reference frame (BRF)

direction cosine matrix relationship between IRF and BRF
angular velocity of body reference frame

basis matrix for sth elemental body reference frame(ERF)

Position of current center of mass (CM) in IRF

Velocity of current CM in IRF

Position of the sth element in IRF

position of CM in BRF

position of undeformed sth element from undeformed CM

position of sth element from the undeformed position
position of differential mass in sth elemental body

angular deformation of sth element

Inertia dyadic of the aircraft with respect to CM

Inertia dyadic of the sth elemental body about its CM

Table 2. Vector Identities and Matrix Operation
Equivalents

Vector representation:

= [i} T = [i]T X

Z = [i}T = {i}T Y

Cross product representation:

£ x Z = {fiT _ Y = - {ilT _ X

where the - operator is defined below:

(X) ~ = X = x 3 0 -
-x2 Xl _i

Operations with dyad

i = {i}T I {i]
=

I • x = [i)T I X
= --

x _. Z = [i}T I _ Y

A highly detailed description of the hybrid

coordinate method, which is used here to develop

the dynamic equations, can be found in references

[5} and [6]. Only some highlights of the

development of these equations will be presented

in this paper. The development of the equations

closely follows that of reference [7], with

aerodynamic forces added. The equations are

implemented as a computer program, FLXAIR.

Figure I shows a schematic diagram of the

various reference frames associated with each

subbody. Definitions of the vectors and dyads

used in this figure and in the derivations are

given in Table I. Table 2 shows the equivalency

between various operations in a vectorldyad format

and those in a matrix format. The matrix format

is used for implementing the computer solution to

our problem.

Section 2 deals with the net force and torque

applied to the total body. The net forces and

torques on the subbodies are described in section

3. Derivations are kept brief, with only main

steps provided. The rational function

approximation used for describing the unsteady

aerodynamic forces is given in section 4. In

section 5 the equations are integrated in a state

space format, with aerodynamic forces specifically

separated from other external forces. These

nonlinear and time dependent equations can be used

for simulation. When the angular velocity of the

body reference frame is constant, the equations

become time invariant. It is then possible to

study the effects of angular velocity on vehicle

structural dynamics by performing an eigenvalue

analysis. When unsteady aerodynamic loading is

included in this formulation, this is seen to be a

flutter analysis under maneuver.

A large-order finite element model which is a

realistic representation of an advanced fighter

was used to demonstrate the stability effects of

high roll rates. Section 6 describes the NASTRAN
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model, structural and aerodynamic, which was used

Jn the analysis. Results are shown for various

roll rates and for variations of overall stiffness

of the aircraft. The analyses show little effect

on the flexible modes of the system due to roll

maneuvers. Considerable effect was, however,

observed for the rigid body modes.

2. TOTAl, BODT DYNAMICS

The equations are derived from Newton-Euler

equations• The equations for the net force [, and

the net torque P , can be represented as follows.

= i_t22(MTo¢ _) (1)

p = id (H) (2)

MTo t is the total mass, and H is the angular

momentum referred to the CM of the aircraft.

Presuperscript i refers to the fact that the

differentiation must be with respect to the

inertial reference frame.

The further development neglects the effects

of rotating bodies such as engine compressors,

fans, rotors, etc.. It is assumed that the

deformation of flexible bodies is small in the

body reference frame. This assumption is used to

neglect the high order terms in the deformation

variables _s(linear deformation of sth element)

and @s(angular deformation of the sth element) and

their derivatives.

Equation (I) can be written in the body

reference frame and for ease of computer

implementation in matrix form as follows:

F = MTo t eV (3)

The development of equation (2) to a computer

implemenIable step Js lengthy. Only few key steps

are given.

The angular momentum H is defined as

H = ;(_+Is+Us+_s) x id (C+!s+Us+Ps) dm (a)

The development makes use of the mass-center

definition

I(S+is+_s+ts) d= - 0 (5)

and the following identity:

;(£s+_s+Ps) x ( w x (£s+ts+ts)) d= - l "_ (6)
=

With the use of equations (4) to (6), equation (2)

can be written as

P=!'=÷_x!" =+i'=+_x c

+ id ;([s+_s+ps ) x (rs.us+os) dm (7)
dt

The assumptions of discrete lumped masses and

small deformations with respect to the body

reference frame are now used to convert the

integration operation into the following summation

operation:

/(!s÷us+£S) x (Es+Us÷pS) dm =

_s x ms _s + E !s " _s (S)

where m s is defined as:

S dm = m s (9)

s

and center of mass definition of sth lumped mass

is given by

; _S dm = 0 (I0)

S

Finally, equation (7) can be written in a

computer implementable form as:

P = I_ +i_ +_I_

+ E(CC_rs)- +?s_)usms +_sJsms +ls_ s]

+ _Is_ s (11)

The total inertia is assumed to be linear in

the deformation variables.

I - l*+£ms(2rsTusE -rsU _ -usrsT )

+ Z(_sIs-Is_s) (12)

where I* is the inertia of the undeformed

airplane, Therefore

f . Zm s[2rsTusE -rS6 _ -Usrs T)

+ _(;szs-zs_s) (13)

Equations (12) and (13) can be substituted into

equation (11) to further simplify the equation.



3. ELEMDrrAL BODY DYNAMICS 4. RATIONAL FUNCTION APPROXIMATION

The net forces and torques on the sth

elemental body are as follows:

-fs = ms id2- (d + c + r s + u s ) (14)
_Z -- --

Ps " i_t-Hs (15)

_Hs is the inertial angular momentum of sth element

referred to its mass center. Note that this

equation is applicable to all n subbodies.

It is assumed that the body reference frame

and the elemental body reference frames are

initially colinear. This assumption, though not

necessary, is used here to simplify the equations.

Equation (14) can be written in the following

computer implementable form:

+ us +_(rs+us+c) } (16)

noting that

V = d (d) (17)

dt

_s is defined as

Invoking the assumption of small deformation, the

rotation is represented by

_s = {b}T _s (19)

Note that this equation is strictly true if the

rotations are infinitesimally small. The

relationship between the body reference frame and

the elemental reference frame can now be

approximated as

{bs] T = {b} T (E+_s) (20)

where E is a 3x3 unit matrix.

Using equations (18) to (20), equation (15)

can be written in the following computer

Implementable form:

Ps l IS(_S) +(Is_+_Is-(Is_)" )_s +_Is¢_

+ (Is_a-(Is_0 )- -_(Is0_ )" +_Is_)B s (21)

OF UNSTEADY AERODYNAMICS

The formulation of the unsteady aerodynamics

is based on the relation

{_) . 2_/_. [NID] (ap} (22)
pV2

where (6p) represents the pressures at aerodynamic

force nodes, {v] contains the velocities normal to

the lifting surface induced by {Ap}, and [NIO] is

the induced normal downwash influence matrix. The

induced velocities are defined as downwash

collocation points which are located at the 3/4

chord of each aerodynamic box for the doublet

lattice method.

Downwash collocation points are those points

on a lifting surface at which the induced velocity

normalized by the free stream velocity is equal to

the local angle of attack {a}, i.e.,

{a} - (_) (23)

The pressures are then given by

I
{ap] - _ oV2 [NID] -I [a} (24)

or

1
{_p) = _ pV2 [AlC] (a} (25)

where [AIC] = [NID) -I.

In the following derivation, Equation (24) is

used as a starting point.

From (6p), by an integration or "lumping"

process represented by [ZP], the aerodynamic

forces are obtained:

(Zaero} - [ZP] (ap} (26)

The local angle of attack) taken relative to

the tree stream velocity, V, is given by

(a} = {aT} + {a_} (27)

The contribution sT is the instantaneous

slope of the lifting surface, relative to V, in a

plane through V perpendicular to the lifting
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surface:

(aT} . IDol [z} (28a)

where [D O ] is a differentiating matrix.

The contribution a_ results from the rate of

translation in a direction perpendicular to the

lifting surface:

where [D z] is an interpolating matrix.

(28b)

Substituting Equation (28) into Equation (27)

and replacing _ by sz yields:

tO:

+ s iDz] ] (z){a) [[D e]
(29)

Combining Equations (24), (26) and (29) leads

1 pV2[Zp] [NID]-I
(Zaero] -

* IDol * q [Dz] [z} (30)

For constant amplitude oscillation s = ie =

i(Vk/c). The induced velocity matrix is a

function of ik. It follows that Equation (30) can

be written as:

1
(Zaero) = _ oV2 [A(ik)] (z} (31)

where A(ik) is given by:

[A(Ik)] = [ZP] [NID(ik)] -I [[Do] + _._k[Dz] ]

(32)

For developing the explicit function of s,

[A(s)], corresponding to [A(ik)], the [De] and

IDz] contribution to [A(lk)] are identified

separately, and the explicit occurrence of s in

Equation (30) is maintained.

[A(ik,s)] - [ZP] [NID(Ik)] -1

* IDol+ _ [ZP] [NID(ik)] -1 [Dz]

Let:

[AT(ik)] - IZPI [NID(ik)] -I [Do]

(33)

(34)

and

[Az(ik)] = [Zp] INID(Ik)] -I [D z] (35)

Then:

s
[A(ik,s)l - [AT(ik)l * _ lAz(ik)] (36)

Preliminary to approximating [A(Ik,s)l by an

explicit function of only s, [AT(ik)] and [Az(ik)]

are approximated by [AT(P)] and [Az(p)], where p

is the nondimensional form of s: p - cs/V.

Following Reference [8], the following terms

are approximately,

[AT(P)] = [BTOI p + b_
j-I J

(37)

n
+ g (38)

[Az(P)] = [BzO] p + b-
J-I J

These matrices can be obtained by generating

aerodynamic matrices for several values of k and

then employing a least-squares fit.

Because the state-space equation will be

written in terms of s, Equations (37) and (38) are

written in terns of s by letting p _ cs/V:

n
[AT(S)I . [BTo I + s r.

J.i s+ 6j

IAz(S)l = (8zO I ÷ s r.
j.1 s + 6j

where

Sj - V bj/c

(39)

(40)

Combination of Equations (31), (35), (36),

(39), and (&O) leads to the following approximate

expressions for the aerodynamic forces:

(gaero } . _ pV2 [BT0 } + {z}
w

+ _ pv 2 [Bzo I + _ Z (z}
J=l

(41)



5. INTEGRATED TOTAL BODY AND ELEMENTAL

BODT DINAJ41CS

The general form of the linear flexlble body

equation is

M'q + b q + G'(_)q + K'(T_,K)q

+ A'(_,_)q _ L'(_,_,fs,p s) (42)

whereq-IuIT._l T.... ul._l .... _R._l T. ,. o. andK
are mass, damping, and stiffness matrices

respectively of the airplane which are obtained by

a traditional finite element method, such as

NASTKAN. The other terms, C', K', A' and L' are

obtained from equations (16), and (42). Note that

K' is a symmetric matrix, Equations (3), ill),

(12), (13) and (42) can be written in the state

space like format as follows:

i! ooo!III+

0 En _I

LM_Eoe _ 0 2

ooo°IllO _I* _ r 1

0 0 0 -En _i

0 A I K'+A' G'+D 2

(43)

Equations (44)-(55) explain various terms in

equation (43).

nl - q (44)

n2 : _ (45)

0 is a nuU matrix and dimensions are context

dependent.

E n is 6nx6n matrix.

r0 n2 = r-mstsUs*ZZs_s

z _I " _(r_s(zrsTusZ-rsU_-Usrs T)

+ Z_sIs-£1s_s](_+ [Ems(2rsTusE

- rsu_-UsrsT)+_sls-_IsBs]¢

(46)

(47)

rl n2 = (_ms(2rsTusE-rsU_-Usrs T)

+ £_sls-ZIs_s}¢ ÷r.ms[(_rs)"

* _s_lUs+ X_IsS s

E = 3x3 unit matrix

(48)

M = block diagonal 6nx6n matrix vhere block

dlagonals are 3x3 matrices

- Block diagonal [ mlE, I 1 .... msE, Is,

• ., mnE, I n ]

EEO = [ E 0 E 0 .. E 0 ]T 6nx3 matrix

TOE . [ 0 E 0 E .. 0 E IT 6nx3 matrix

M' = M(E n - £EoZTEoMIMTot) (49)

A O = M(TOE - R) (50)

:ii
°1;°

A I = [_og_l" H _OE -M[_EO _l~ _ (52)

[£OEmI" = block diagonal matrix of dimension

6nx6n. Each block is 3x3.

The diagonal blocks are

[ _ 0 _ 0 .. _ o ]

[_EOeJ - - block diagonal matrix of dimension

6nx6n. Each block is 3x3.

The diagonal blocks are

[ o _ 0 _.. 0 • ]

[MTOE_]- = block diagonal matrix of dimension

6nx6n. Each block is 3x3.

The diagonal blocks are

[ O (II_)" 0 (I2_)- .. O (In_)" ]

K' . K + ITOE¢I- M ITOE_]" + M [ {Zzo.l"

* [EEOC]" -£EO_W_£Z_H/HTo t } (53)
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0

0

0

K,+A,_pV 2
BTO

O

0

0

0

A' - M[_OE_I- - iMEoE_I-

+ M [ [ZEO_] ~ - EEO_EoMIMTot }

+ [EOE_]- [M_.oE_]- (54)

G' - M[f.OE_]- + ICOE_]- M - [Nr-oE_l-

+ 2M [ [_EOW]" - _EO_ZEoMIMTot } (55)

Definitions of [EOE_]-, [ZE0_]-, and [M_OE_]~

are very similar to [EOE_] -, [EEO_] -, and [MZoE_] -

and hence they are not given here.

Equation (43) has the form

A 0 X + A I X = U (56)

where definitions of A 0, A I, X, and U are obvious.

Equation (56) can be written as

= -Ao-I A 1 X + A0-1
U (57)

Eq.(57) can be simply written as

= A X + B U (58)

Definitions of A and B are obvious.

Eq.(58) can be used for the time simulation.

To better understand the interaction between the

total body and the flexible body dynamics, steady

state maneuvers (i.e. constant angular rates of

the body reference frame) are studied.

By putting the derivative of _ to zero and

including the aerodynamic force representation

from equation (41), equation (43) becomes:

j{lI 0 0 0 _i

-pV M' -pV -oV BZ2 _2
T BZO I BZI --_ +

0 I 0 6 3

o o z 64

C'+D' -°V2_ BTI _ BT2 _2

-Z _I n3

-I 0 _2 J _4

(59)

Note that the coefficient matrices on LBS of

the equation (59) are time invariant when the

angular rate, _, is constant. Hence the

eigenvalues of the system can be used to check the

stability of the system and to study the effects

on modes of the system at different angular rates.

6. APPLICATION TO FINITE ELEMENT MODEL

A large-order finite element model (FEN) of a

generic fighter was obtained for use in the

application of this method. The aircraft planform

is similar to an F/A-18, although stiffness and

mass data do not necessarily represent this

airplane. Although the FEN consists primarily of

beam elements, it iS a highly detailed model

containing an A-set of 228 degrees of freedom

(DOF) and approximately 200 structural elements.

Aerodynamic modeling of the aircraft consisted of

230 boxes, and can be seen in Figure 2. The

doublet lattice method was used to formulate

aerodynamic influence coefficient matrices. Eight

values of reduced frequency were used to calculate

unsteady aerodynamic matrices.

Certain assumptions used tO develop the

equations required that some modifications be made

to the model. The equations assume that the

mathematical model has six DOF for every subbody.

If these matrices are generated from a FEN, this

is rarely true. In NASTRAN , this corresponds to

the initial global set (G-set) of coordinates.

These DOF cannot normally be used, however,

because many are constrained due to the method of

modeling and imposition of boundary conditions.

Figure 2. Aerodynamic Configuration
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Table 3. Flexible Mode Frequency and Damping for Roll Rate Maneuvers
Full Stiffness

MSC/NASTRAN

FLUTTER

ANALYSIS

FREQUENCY DAMPING
8z

6.734 -.0689

8.948 -.OOO459

9.085 -.O740

14.192 -O.175

16.434 -.0730

18.736 -.0249

21.172 -.0188

23.172 -.0268

24.352 -.0406

29.578 -.00707

32.916 -.0458

FLXAIR

ANALYSIS

0.0 DEG/SEC
ROLL RATE

:FREQUFA_CYI DAMPING

Hz

6.699 -.0653

8.957 -.OOO422

9.056 -.0722

14.371 -0.142

16.779 -.0806

18.756 -.0297
21.812 -.0157
23.333 -.0292

24.692 -.0416

29.719 -.00878

33.439 -.0387

FLXAIR

ANALYSIS

90.0 DEG/SEC

ROLL RATE

FREQUENCY DAMPING

Hz

6.696 -.O653

8.955 -.OOO467

9.053 -.0722

14.368 -0.142

16.778 -.0806

18.755 -.O298
21.813 -.0159

23.333 -.0293
24.691 -.0416

29.276 -.00871

33.448 -.0387

FLXAIR

ANALYSIS

180.0 DEG/SEC
ROLL RATE

FLY,AIR

ANALYSIS

240.0 DEG/SEC

ROLL RATE

FREOUEHCT
Bz

FREQUENCY DAMPING

Hz

6.685 -.0655

8.946 -.000539

9.044 -.0722

14.361 -0.142
16.774 -.0806
18.753 -.0298

21.814 -.0165

23.331 -.0294

24.689 -.0416

29.721 -.00865
33.437 -.0387

6.673

8.936

9.035

14.353

16.771

18.751

21.815

23.333

24.688

29.722

33.436

DAMPING

-.0656
-.OOO602
-.O722
-0.142
-.0805
-.O298
-.O162
-.O294

-.O416

-.00863

-.0387

These constrained DOF present a problem which

requires either the modification of the equations

or of the input matrices.

Another assumption made in the equations is

that the mass matrix is block diagonal. However,

the typical mass matrix from a FEM analysis

contains coupling terms. These arise because of

the following reasons:

i) Mass data may be input at locations other

than structural grid point locations.

2) Coupling results from the use of

dependency relations (multi-point

constraints in NASTRAN).

3) Coupling results from the static reduction

if inertia is lumped on any of the

omitted DOF (Guyan reduction).

These considerations make It necessary to

adjust the model as follows:

I) The inertia is relumped so that it is

located at exact grld point locations.

2) Inertia at dependent DOF is relumped so

that it is associated only with

independent DOF.

3) Inertia located at DOF which are

eliminated by the Guyan reduction process

must be relumped at retained DOF (A-set).

4) A Boolean transformation matrix is formed

for use in expansion of the FEH A-set DOF

to the 6n DOF required by the equations.

After forming the state space equations,

this same matrix can be used to eliminate

those DOF.

A NASTRAN flutter analysis of the vehicle was

conducted for a case representing Mach .7 and an

altitude of 20,000 ft. Mass, stiffness, and

aerodynamic matrix data were obtained from NASTRAN

for this case. The necessary matrices for the

rational function approximation of the

aerodynamics were obtained by a least squares fit

using aerodynamic matrices for reduced frequencies

of O.0, 0.2, and 0.8 The state space equations

were formed and etgenvalue Solutions were obtained

for various values of roll rate.

For zero roll rate, the results agreed with

the NASTRAN analysis. Increasing roll rate showed

little effect on the flexible modes of the system,

as can be seen in Table 3. The rigid body modes

were affected, however. A root locus plot of the

rigid body roots as a function of roll rate is

shown in Figure 3. For zero roll rate, two stable

real roots and one stable complex conjugate palr

are obtained - corresponding to a roll convergence

mode, a spiral mode, and an oscillatory dutch roll

mode. With increasing roll rate, however, we see

/b-Z



Figure 3. Rigid Body Eigenvalues for Roll Rate

Maneuvers

Full Stiffness
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that some roots become unstable, and also change

from real to complex and back again to real.

Another case, representing a more flexlble

airplane, shays the same behavior (Figure 4),

although the changes occur at lower roll rates.

This case represents 50Z of the initial overall

airplane stiffness. Table 4 shows again that the

flexible modes were not greatly affected, even for

the reduced stiffness case.

7. DISCUSSION

Dynamic equations have been derived for a

flexible fixed vlng aircraft, Including an

explicit representation of unsteady aerodynamic

forces. The aircraft is assumed to be a

collection of elastically interconnected discrete

rigid subbodles. Deformations are assumed to be

small in the body reference frame, thus alloying

the equations to be lineartzed in the deformation

variables.

tO0 2.O0 3.00 4.00 5.00

The hybrid coordinate method is used to

derive the total body and the elemental body

dynamic equations which are then converted to

matrix form. These equations are integrated in a

state space format, along with a rational function

approximation o£ the unsteady aerodynamic forces.

These equations can be used for simulation. For

the case of constant angular velocities of the

body reference frame, the coefficient matrices

become time tnvariant, alloying the use of an

elgenvalue analysis to evaluate the effects of the

angular rates on the system dynamic properties.

Vhen this method is applied to s realistic finite

element model of a generic high-performance

fighter, significant changes in the stability

characteristics of the aircraft are observed.

Vtth increasing roll rate, some roots become

unstable, and also change back _Lnd £orth from

complex to real. The dutch roll mode becomes two

real roots, one DE which combines with the spiral

mode to produce an unstable oscillatory mode. The

other real root from the original dutch roll mode
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Table 4. Flexible Mode Frequency and Damping for Roll Rate Maneuvers

50 Percent Stiffness

FLXAIR

_ALYSIS

0.0 DEG/SEC

ROLL RATE

FL%AIR

ANALYSIS

60.0 DEG/SEC

ROLL RATE

FLXAIR

ANALYSIS

90.0 DEG/SEC

ROLL RATE

FLXAIR

ANALYSIS

180.0 DEG/SEC

ROLL RATE

FREQUENCY DAMPING FREQUENCY DAMPING

Hz Bz

FREQUENCY DAMPING

Hz

4.858 -.0737

6.333 -.000553

6.500 -.0930

10.229 -0.186

11.871 -.0874

13.334 -.0431

15.435 -.0199

16.527 -.0365

17.497 -.0578

21.021 -.0124

23.711 -.0479

FREQUENCY DAMPING

Hz

4.855 -.0737

6.331 -.0OO590

6.500 -.0930

10.227 -0.186

11.870 -.0874

13.333 -.0432

15.435 -.0200

16.527 -.0366

17.497 -.0578

21.022 -.0124

23.671 -.0479

4.839

6.318

6.484

10.216

11.867

13.331

15.436

16.525

17.494

21.024

23.669

-.07367

-.000492

-.0929

-0.186

-.0873

-.0431

-.0196

-.0364

-.0578

-.0125

-.0479

4.860

6.335

6.500

10.230

11.871

13.334

15.435

16.527

17.498

21.021

23.671

-.0739

-.000727

-.0930

-0.185

-.0873

-.0431

-.0204

-.0367

-.0578

-.0122

-.0479

Figure 4. Rigid Body Eigenvolues for Roll Rote
Moneuvers

50 Percent Stiffness
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combines with the roll convergence to form another

oscillatory mode which becomes more stable with

increasing roll rate. The effect on the flexible

modes o_ the aircraft was minimal for this

configuration. The behavior oE the rigid body

modes is somewhat dependent on airframe stiffness,

as can be observed for the 50% stiffness case.

It is expected that a design with increased

span would show a greater effect due to roll rate

for both _he rigid body and flexible modes. This

should be given consideration in the design of any

future high-performance aircraft.
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